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Abstract: Human land use legacies have significant and long-lasting ecological impacts 

across landscapes. Investigating ancient (>400 years) legacy effects can be problematic due 

to the difficulty in detecting specific, historic land uses, especially those hidden beneath 

dense canopies. Caracol, the largest (~200 km2) Maya archaeological site in Belize, was 

abandoned ca. A.D. 900, leaving behind myriad structures, causeways, and an extensive 

network of agricultural terraces that persist beneath the architecturally complex tropical 

forest canopy. Airborne LiDAR enables the detection of these below-canopy 

archaeological features while simultaneously providing a detailed record of the 

aboveground 3-dimensional canopy organization, which is indicative of a forest’s 

ecological function. Here, this remote sensing technology is used to determine the effects 

of ancient land use legacies on contemporary forest structure. Canopy morphology was 

assessed by extracting LiDAR point clouds (0.25 ha plots) from LiDAR-identified terraced 

(n = 150) and non-terraced (n = 150) areas on low (0°–10°), medium (10°–20°), and high 

(>20°) slopes. We calculated the average canopy height, canopy openness, and vertical 

diversity from the LiDAR returns, with topographic features (i.e., slope, elevation, and 

aspect) as covariates. Using a PerMANOVA procedure, we determined that forests 

growing on agricultural terraces exhibited significantly different canopy structure from 

those growing on non-terraced land. Terraces appear to mediate the effect of slope, 

resulting in less structural variation between slope and non-sloped land and yielding taller, 
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more closed, more vertically diverse forests. These human land uses abandoned >1000 

years ago continue to impact contemporary tropical rainforests having implications related 

to arboreal habitat and carbon storage.  
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1. Background and Rationale 

1.1. Human Land Use Legacies 

One interface between the disciplines of landscape archaeology and landscape ecology is the study 

of land use legacies. Understanding the consequences of human alteration of landscapes has become 

increasingly important as human populations continue to expand and natural landscapes are 

continually transformed [1,2]. Just as modern human societies alter landscapes, so did prior ones [3]. 

Land use history (e.g., forest clearing, agricultural regime, abandonment) directly influences both the 

biotic (e.g., presence of novel species assemblages) and abiotic (e.g., changes in soil nutrients, 

hydrology, topography) environments [4]. These changes may lead to long-term effects on 

contemporary measures of biodiversity (i.e., composition, structure, and function) that may impact 

current services (e.g., habitat, carbon sequestration) provided by the ecosystem (Figure 1). 

Figure 1. The interacting and cascading effects of land use legacies on modern  

forested systems adapted from [4]. Regions enclosed by dashed outlines include some 

parameters that can be measured with airborne LiDAR. Blue and red outlines represent 

historic-archaeological (past) influences and contemporary (present) factors, respectively. 
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While deforestation is still occurring at an alarming rate throughout many parts of the world, 

afforestation is occurring in other regions as former agricultural fields are abandoned [5–7]. By one 

estimate 50%–80% of the forests in New England are on former agricultural fields [8]. Locations that 

have traditionally been thought of as sparsely populated and fairly pristine prior to European 

colonization, such as the Americas, are now known to have been significantly altered by ancient 

humans [9,10]; hence, the concept of “virgin” forests is now relatively obsolete [11,12]. Evidence 

suggests that vast tracks of forest had been cleared for agriculture or burned by indigenous humans 

prior to western arrival in the New World [13–15]. Given the current rate of land alteration and the 

extensiveness of past alteration by ancient people, the persistence and implications of these land use 

legacies have become important questions in ecology [16–18].  

The time since a land use has been abandoned and allowed to revert back to a natural state is a 

determinant of the type and extent of the legacy present [1,2,10]. In European forests, agricultural 

legacies have been shown to endure over a millennium after abandonment, with species composition in 

secondary forests that regenerated over former agricultural fields lacking native species found in 

ancient forests [13,19]. Another example of ancient land use legacies continuing today is found in 

Central America with the Maya civilization. A large percentage of forests in Central America are 

secondary forests that have regenerated after the collapse of the Maya civilization [10,20]. Studies 

have suggested these forests contain trees species that were of economic importance to the ancient 

Maya, which may persist as remnants of the Maya orchard-gardens [21]. In addition to species 

introduction by the Maya, disturbance from agriculture and settlement constructions may have altered 

the landscape in ways that provided optimal habitat for specific, limestone loving species, such as the 

Ramon tree (Brosimum alicastrum) [22,23]. Fingerprints of ancient land use may also be found in 

forest structure (basal area, biomass, canopy height canopy closure, etc.) independent of species 

composition [24,25]. Forests may take between 60–200 years to regenerate to their previous canopy 

height [26,27]. However, structure has been shown to be influenced by topography [28] and soil 

nutrients [29], which may have been irrevocably altered by past land use, making it impossible for 

forests to regenerate to pre-land alteration conditions [2,17].  

1.2. Forest Canopy Structure 

The structure of a forest offers key insights into ecosystem function and biodiversity. It has been 

directly correlated to a number of important ecological measures, such as biodiversity and carbon 

stocks, i.e., aboveground biomass (AGB) [30,31]. By describing spatial patterns we can determine 

processes at work in a landscape [32]. Forest structure can be directly tied to species diversity, with a 

more heterogeneous structure often indicative of not only higher floral diversity, but also high faunal 

diversity as well [33–35]. The structure of forests is often used as a proxy for determining live AGB, 

an important factor in identifying sources of carbon sequestration [28,36]. Forest structure relates to 

the health of an ecosystem, where a higher degree of heterogeneity is suggestive of a more dynamic 

forest (i.e., disturbance, gaps, recruitment) [37,38]. Understanding the factors that drive forest structure 

can enable a better understanding of general ecosystem function [39–41].  

A number of factors are known to affect forest structure, among them natural and human 

disturbance [42], climate, soil type and nutrients, and topographic position [29,43]. Topographic 
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position, which include measures of relief (or slope) and elevation, have been shown to have a strong 

effect on forest structure. Forest canopy height and AGB have been directly correlated to topographic 

relief, with high AGB and greater canopy heights in lower slopes and valleys compared to steeper 

slopes which are typically associated with lower AGB and lower canopy heights [28,44]. Canopy 

openness has also been shown to increase on steeper slopes compared to low slopes and valleys [45]. 

While topographic position appears to be a strong factor in influencing forest structure, another 

important, if indirect, factor to consider is disturbance.  

While natural disturbances such as floods, fire, and wind damage can drastically alter the structure 

of a forest [30,46], human disturbances can also have a significant impact [24,25,47]. However, for 

many human land uses, regenerating forests attain levels of vertical structure very close to original 

levels within 50 to 200 years [25,27]. Other forms of human land use may have longer lasting impacts, 

depending on the intensity of former land use [2]. Land use that alters the topography of the landscape 

has the potential to permanently alter the structure of the forest that regenerates, so long as the change 

in topography remains. One such land use can be found at Caracol, Belize, where the Maya extensively 

terraced across the hilly landscape. The terraces were constructed between A.D. 650–900 and are still  

in place today [48,49]. The terracing has essentially created fine-scale, level areas along hill slopes, 

effectively transforming the micro-topography of the region. Thus, Caracol provides the opportunity to 

investigate the extent to which human-altered topography continues to impact the ecosystem 1000 

years after forest reestablishment.  

2. Objectives 

Though archaeologists typically wish to ignore or remove the vegetation that obscures the view  

of their ancient landscapes [50] and ecologists often wish to discount the influence of historic events  

on ecosystem composition, structure, and function [2], this study exploits the ability of LiDAR to 

simultaneously map forest canopy and below-canopy archaeological surfaces. Specifically, the goals  

of this research are to use LiDAR to (1) delineate the location of Maya agricultural terracing and areas 

where there are no detectable terraces and (2) quantify structural attributes of the forest canopy  

(i.e., height, openness, and vertical diversity) at Caracol. Furnished with this information, we can  

(3) assess the extent to which the ancient Maya agriculturally engineered (i.e., terraced) landscape 

impacts the LiDAR-derived forest structure of today. 

3. Study Area 

The Caracol Archaeological Reserve is located in west-central Belize along the Guatemalan border. 

The reserve resides across a karst landscape consisting of alternating hills and valleys, with elevations 

ranging between ~310 to 720 m asl. The Caracol study site encompasses an area of ~200 km2 (Figure 2) 

and is surrounded by the Chiquibil National Park. It represents a massive Maya city with extensive 

monumental architecture whose extent has been documented through LiDAR [51,52]. The dense 

subtropical moist forest of Caracol reaches average heights of 22 m and leaf off never exceeds 20%, with 

lowest leaf area index occurring during the end of the dry season (end of March, beginning of April) [42]. 

Recent human and natural disturbance of the forest has included hurricanes in 1968 and 1973 [53] and 

encroachment from Guatemala. These incursions entail the clearing of large swaths of forest along the 
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border and targeted removal of desirable tree species throughout the reserve, primarily Swietenia 

macrophylla (Mahogany) and Cedrela odorata (Cedar) [54].  

Figure 2. Hillshaded DEM of the Caracol study site with 300 sample plot locations  

randomly distributed across terraced and non-terraced areas. Samples, which were 

stratified by land use type (terrace and non-terrace) and by slope (low, medium, high), 

were not collected near the Guatemala border, where there is ongoing deforestation (shown 

in pink). 

 

Ancient Maya land use is ubiquitous throughout the study site. Thousands of residential and 

ceremonial structures are found throughout the ~200 km2 area, as well as ~67 km of causeways 

radiating out from the epicenter (i.e., central metropolis area with a high density of temple, palace, and 

residential structures). The Maya built extensive limestone terraces throughout the landscape for 

agricultural purposes, growing maize and other crops, such as beans and squash [48,55,56]. These 

terraces have been reported to cover as much as 80% of the study site and can be found along hill 
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slopes and in valleys. The ability of airborne LiDAR to geolocate accurately ground surveyed terraces 

hidden below the forest canopy at Caracol has been previously documented [52,57,58]. From our 

visual analysis and digitization of the hillshaded digital elevation model (DEM), conspicuously 

terraced areas represented 28.7% of the landscape while conspicuously non-terraced areas represented 

35.7%. Terraces at Caracol have been shown to increase soil depth along hill slope by up to 0.6 m [48]. 

Studies of other Maya terraces have shown that terraces effectively prevent soil erosion along slopes, 

increase soil depth, and increase moisture retention [59,60]. 

4. Methods 

4.1. LiDAR Data Collection, Extraction, and Sampling 

In April 2009, LiDAR was flown over the Caracol study site [61]. The LiDAR survey used an 

Optech GEMINI Airborne Laser Terrain Mapper (ALTM) mounted on a twin-engine Cessna 

Skymaster. During the 9.5 h of laser-on flight time, a total of 122 flight lines were flown ~800 m above 

the ground surface, 66 in a North-South direction and 60 in an East-West direction, allowing optimal 

penetration through the dense canopy. The swath width was 520 m and flight lines were placed 260 m 

apart, insuring a 200% overlap. The survey yielded ~20 points per m2, for a total of 4.28 billion 

measurements, of which 295 million were classified as ground returns (1.35 ground return points per m2 

on average). The data were processed by NCALM (National Center for Airborne Laser Mapping); the 

final product included LiDAR point cloud files and a bare earth DEM with a 1 m horizontal resolution 

(see [62] for details explaining the DEM creation).  

Three hundred non-overlapping 0.25 ha circular plots were randomly placed across the entire 

Caracol DEM using Hawth’s tools [63] to the east of a ~2.5 km-wide area near the Guatemala border 

which has been subjected to illegal clearing and selective logging [54]. Sample plots were stratified 

using terraced (n = 150) and non-terraced (n = 150) land use layers in ArcGIS that had been carefully 

digitized off the DEM (Figure 3). Other than terraces, these areas excluded areas with other Maya 

structures (e.g., causeways, residences, monuments). Samples were further stratified by low (0°–10°; 

n = 50), medium (10°–20°; n = 50), and high (20°–40°; n = 50) slopes to insure an even representation 

of slopes. Using FUSION LiDAR analysis software [64], LiDAR point returns were extracted for all 

elevation layers for the Caracol DEM and slope, aspect, and elevation values were obtained for each of 

the slope classes in the sample. ArcGIS 9.3 Spatial Analyst was used to generate slope, aspect, and 

plots. The Density Metrics function in FUSION permitted us to sample the 0.25 ha LiDAR point 

clouds by extracting slices associates with height ranges. Returns were sampled in 3 m height slices 

and sorted into bins from the forest floor to the canopy top (Figure 4) [65]. The final FUSION product 

yielded a data set of vertically binned height returns for each plot. All plots were sampled using a fixed 

grid with 10 × 10 m cells and all cells were summed for each height class. The proportion of total 

points was calculated for all height bins within each plot for the final height bin data set.  
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Figure 3. Renditions of 500 × 500 m (a) non-terraced and (b) terraced areas from Caracol. 

Locations of these example areas are shown in Figure 2. 

 

Figure 4. Example of a (a) 0.25 ha point cloud of rainforest canopy and (b) associated 

histogram of proportions of returns binned into 3 m height intervals. 

 

4.2. Statistical Analysis 

The following forest structural characteristics were calculated using the LiDAR point height bins  

for each sample plot: average canopy height, canopy openness, and a vertical diversity index. Average 

canopy height was calculated by taking the average of the maximum heights for each 10 × 10 m 

window in the 0.25 ha plot. The measure for canopy openness was calculated by taking the ratio of 

ground returns divided by the sum of all other returns (ground returns/all non-ground returns) [66]. 

Jost diversity index was calculated for the proportion of returns that had been binned into 3-m height 

classes for each plot and used as an approximation of vertical diversity [67]. 

a) b) 

r = 28.25 m 
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Permutational multivariate analysis of variance (PerMANOVA) was used to test for significant 

differences in forest structure between non-terraced and terraced areas. PerMANOVA allows for a  

non-parametric analysis of variance, which is ideal for non-normal data sets. PerMANOVA first 

calculates a distance matrix using a user selected distance measure. The test statistic (F-ratio) is 

calculated directly from the distance matrix. Permutations are then used to generate p-values to 

determine significance [68]. The Adonis function in the vegan package in R was used to perform the 

PerMANOVA analyses in our study [69]. 

For the first analysis, land use (terraced vs. non-terraced) was used as our factor, while slope, 

aspect, and elevation were held as covariates. A distance matrix (response variable) was calculated 

from the measured forest structural characteristics (i.e., average canopy height, canopy openness, and 

vertical diversity index) using the vegdist routine in the vegan package [69] for the R statistical 

software program. Vegdist uses the Bray-Curtis (Sorenson) distance measure, which is appropriate for 

community ecology datasets [70]. In a second PerMANOVA, we used a distance matrix calculated 

directly from the point return height bin data set for each plot. For the second analysis, land use was 

retained as our factor, while slope, aspect, and elevation were held as covariates. A total of 9999 

permutations were used for each analysis. 

5. Results and Discussion 

PerMANOVA results from the LiDAR derived forest measurements indicated significant 

differences between terraced and non-terraced land uses (p = 0.016). Slope was also highly significant 

in explaining the variation between samples (p = 0.001), as was elevation (p = 0.001). The interaction 

of slope and aspect (p = 0.026), as well as the interaction of slope and elevation (p = 0.001), were also 

considered significant in explaining the variation seen between samples (Table 1).  

Table 1. Results from the PerMANOVA of the distance matrix constucted from  

LiDAR-derived forest measurements. 

Sources of Variation df Mean Square F r2 p 
Land Use Type * 1 0.024 5.04 0.013 0.016 

Slope 1 0.134 50.82 0.134 0.001 
Elevation 1 0.028 10.74 0.028 0.001 

Slope: Aspect 1 0.022 4.54 0.012 0.026 
Slope: Elevation 1 0.042 15.78 0.041 0.001 

Residuals 284 0.005  0.748  

* Factor, all other sources of variation calculated as covariates. 

Using the LiDAR height bin distance matrix, PerMANOVA revealed a significant proportion  

(p = 0.005) of the variation was explained by land use categories, i.e., terraced vs. not-terraced. Slope 

was again found to be significant in explaining the variation in the proportion of points found in  

each height bin (p = 0.001). In this analysis, aspect did not contribute significantly to the explanation 

of variation. In addition, elevation did not explain a significant proportion of the variation, but the 

interaction effects of slope: elevation and land use: slope were significant in explaining the variation of 

height bin distributions (Table 2).  
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Table 2. Results from the PerMANOVA of the distance matrix constructed from the height 

bin LiDAR data. 

Sources of Variation df Mean Square F r2 p 
Land Use Type * 1 0.227 5.02 0.015 0.005 

Slope 1 1.048 23.21 0.068 0.001 
Land Use Type: Slope 1 0.170 3.76 0.011 0.018 

Slope: Elevation 1 0.482 10.68 0.031 0.001 
Residuals 284 0.045  0.083  

* Factor, all other sources of variation calculated as covariates. 

When analyzed together as a distance matrix, the forest structure variables (canopy height, canopy 

openness, and vertical diversity index) were significantly impacted by the presence of terraces. When 

the individual trend lines of our three forest structural variables are graphed (Figure 5), a few patterns 

emerged. On non-terraced plots there is a trend of vertical diversity decreasing as the slope increases; 

however, this decrease occurs at a slower rate for terraced land use. A similar pattern exists with 

average canopy height, with canopy height decreasing as slope increases, but this decrease occurs at a 

slower rate on terraced land. Canopy openness increases as slope increase, with canopy openness on 

terraces increasing at a slower rate compared to non-terraced land. At high slope conditions average 

canopy height and vertical canopy diversity are the most pronounced. 

Histograms generated from the LiDAR height bin data showed a similar trend, that is, non-terraced 

bins showed a distinct gradient among low, medium, and high slopes, with medium slope point values 

falling between the low and high slope. However, on terraced land there is a trend of reduced variation 

among slope categories. Within a height bin, different slope categories do not show as steep “stair 

step” pattern in terms of LiDAR point returns (Figure 6). This difference was most pronounced in the 

0–3 m, 21–24 m, 24–27 m, and 27–30 m height bins. Another effect of terraces that can be deduced 

from this figure is an upward shift in the height of median energy (i.e., HOME) [66] from non-terraced 

to terraced plots which is indicative of higher AGB. 

The shaping of forest structure by topographic variables may be explained by differences in tree 

species and the effect of topographic position on tree growth. Observations from previous studies have 

noted that terraces contain flora, such as palms, that are typically found in forest valleys [71]. A sister 

study [72] showed how tree species composition varies across terraced and non-terraced areas, with 

terraces acting as a type of environmental “bridge” between slope and non-sloped areas. Prior studies 

in Mesoamerican forests have shown topography to strongly influence the composition of tree species, 

with forests in valleys, along slopes, and along ridges forming distinct tree communities [73,74]. Tree 

species with specific topographic requirements have a direct impact on forest structure. Furthermore, 

though tree morphology is fairly plastic, different species with their specific architectural constraints, 

to a certain degree, may contribute uniquely to the general canopy structure [31].  
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Figure 5. Relationships of LiDAR-derived values of (a,b) average canopy height  

(c,d) canopy openness, and (e,f) vertical canopy diversity from terraced and not terraced 

plots as a function of topographic slope. Significant differences between terraced and  

non-terraced areas in average values (detected with a t-test) for low (0°–10°), medium  

(10°–20°), and high (>20°) slopes are designated with p-values.  

  

Variation in species composition alone may not explain the difference observed in forest structure. 

Edaphic factors related to topography, i.e., nutrient, water, and light availability, directly influence  

tree growth [28,29]. Differences in forest structure over terraces can be explained by altered edaphic 

conditions [55,56,59]. Steeper hillsides typically have thinner soils and reduced water availability; 

terraces increase soil depth and water availability, which impacts forest structure [44,75]. Terraces also 

retain nutrients that would otherwise be leached out of the soil [59,71]. This study identified a 

significant interaction between slope and elevation on canopy structure (Tables 1 and 2). As position 

upslope increases, nitrogen decreases, which can have an effect on the growth of trees, resulting in 

reduced basal area and canopy cover [29]. Beyond the implications for human land use legacies, this 
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study illustrates how relatively small changes in topography can result in long-lasting changes to 

rainforest structure [44].  

Figure 6. Histograms for average proportion of LiDAR point returns binned by 3-m height 

classes for (a) non-terraced and (b) terraced plots divided into low (0°–10°), medium  

(10°–20°), and high (>20°) sloped areas. 

 

These results indicate that the terraces constructed by the Maya over 1000 years ago continue to 

influence the forest structure at Caracol. The terraces have significantly altered the micro-topography 

of the terrain, resulting in a corresponding echo in forest structure. While topography (i.e., slope, 

elevation, and aspect) appears to act as the driving factor in forest structure variation, the addition of 

terraces dilutes the topographic gradient, reducing the variation in forest structure from low-lying 

valleys to highly-sloped hills.  

6. Conclusions 

Agricultural terracing transforms hillslope topography; these oft-hidden archaeological features can 

last for millennia and are readily delineated with LiDAR [52,57,58]. While likely engineered for soil 

and water conservation, here we used airborne LiDAR to reveal the persistent, unintentional impacts 

that ancient Maya terracing has had on the structure of the tropical rainforest that regenerated after 

agricultural abandonment [60]. This study showed that the presence of terraces dampened the effect of 

topographic slope on structural variables (i.e., height, openness, and vertical diversity) that define a 
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forest canopy. With steeper slopes, terraces yielded ~8% taller, ~20% more closed-canopy, and ~7% 

more vertically-diverse forests. As canopy height decreased with an increase in slope on non-terraced 

lands, height differences were muted with terracing (Figure 5a,b). Canopy openness, a measure related 

to understory light penetration, increased as slope increased; however, on terraced areas, openness  

varied less as a function of slope (Figure 5c,d). Vertical canopy diversity, an estimate of vertical spatial 

heterogeneity that has been correlated to avian diversity [33], followed a similar pattern as average 

canopy height; its variance decreased along the topographic gradient with terracing (Figure 5e,f). 

Terraces mediated the effect of slope on the proportion of LiDAR returns in the vertical, 3-m height 

bins, i.e., when terraces were present, forest structure did not differ as much with slope as when 

terraces were absent (Figure 6). Though not directly measured, these canopy changes most likely 

correspond to higher levels of aboveground biomass or stored carbon [66]. 

The ability of LiDAR to concurrently measure ground and canopy surfaces elucidated this 

heretofore unknown, long-term anthropogenic impact on these forests. After Caracol was abandoned 

ca. AD 900, ancient Maya agricultural practices continue to influence contemporary forest structure. 

These effects should have consequences on ecosystem services (Figure 1) related to arboreal habitat 

and carbon sequestration abilities of this biodiverse, high-biomass region, which is part of the 

Mesoamerican Biological Corridor [76]. Though this study only examined terraces at Caracol, these 

anthropogenic features are found throughout the Maya region [59,77], including the Petén in 

Guatemala [78] and the southern Yucatán in Mexico [20]. With the prevalence of relic terraces 

throughout Central American landscapes and elsewhere [79–81] comes the understanding that past 

agriculture practices have left lasting legacies on ecosystem structure and function. LiDAR 

demonstrated the synergy between landscape archaeology and landscape ecology. This approach can 

be extended across other large expanses of temperate and tropical forests where humans have left 

significant fingerprints from past land use [3,8,12,81] that currently lay obscured below vegetation. 

Moreover, this remote sensing study gives us pause over our current land use practices [82] and 

reminds us that today is tomorrow’s past. 
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