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Abstract: During April and May 2013, a total of 1057 km2 of LiDAR was flown by 

NCALM for a consortium of archaeologists working in West-central Belize, making this 

the largest surveyed area within the Mayan lowlands. Encompassing the Belize Valley and 

the Vaca Plateau, West-central Belize is one of the most actively researched parts of the 

Maya lowlands; however, until this effort, no comprehensive survey connecting all 

settlement had been conducted. Archaeological projects have investigated at least 
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18 different sites within this region. Thus, a large body of archaeological research provides 

both the temporal and spatial parameters for the varied ancient Maya centers that once 

occupied this area; importantly, these data can be used to help interpret the collected 

LiDAR data. The goal of the 2013 LiDAR campaign was to gain information on the 

distribution of ancient Maya settlement and sites on the landscape and, particularly, to 

determine how the landscape was used between known centers. The data that were 

acquired through the 2013 LiDAR campaign have significance for interpreting both the 

composition and limits of ancient Maya political units. This paper presents the initial 

results of these new data and suggests a developmental model for ancient Maya polities. 

Keywords: LiDAR; Maya archaeology; landscape archaeology; settlement patterns 

 

1. Introduction 

The control of spatial relations between archaeological sites has been one of the more problematic 

issues in settlement archaeology in the Southern Maya lowlands—until the relatively recent application of 

LiDAR to the Maya landscape. In part because of the difficulty in broadly understanding the ancient 

Maya use of space and particularly the scale and inter-related nature of sites, there has been a 

proliferation of differing views, theories, and paradigms for approaching past Maya spatial 

organization and relationships [1]. 

Until the advent of LiDAR (Light Detection and Ranging), mapping in the tropical forests of the 

Maya area was extremely time-consuming and usually was not extensive enough to provide the data 

necessary to inform a more comprehensive view of Maya spatial organization. Most mapping at sites 

in the Maya area focused on major centers and the areas immediately outside the concentration of 

central architecture (e.g., Tikal) [2]. With few exceptions, e.g., [3], areas between major centers were 

rarely examined and transects into outlying zones were usually limited in scope (e.g., Dos Pilas and 

Aguateca) [4]. 

While there was early recognition of settlement differences within the Maya region [5], for the most 

part, Maya centers have come to be categorized as either city-states [6] or as primate cities within a 

regional unitary state [7]. Because there was no uniform reconstruction of site relationships based on 

archaeological data, hieroglyphic texts were utilized to reconstruct political affiliations and alliances 

over space [8–10]. However, the epigraphic models, while widely adopted, are not always in alignment 

with existing archaeological data [11–13] or with alternative, but plausible, interpretations of Maya 

spatial organization [14–16]. 

With limited settlement mapping, there were a number of basic questions that went unanswered in 

this specific context. How large were Maya sites and how many people were associated with a single 

center? Were the Maya truly “urban”? What was the relationship between dispersed residential settlement 

and more centralized monumental architecture? Did the Maya have unoccupied space between sites? 

How did the Maya support themselves? Why are Maya sites located where they are? What, if any, are 

the connections between various sites and how can one tell that these connections exist? In addition, 

finally, how do the landscapes of the Maya infill and develop over time? 
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After 50 years, settlement archaeology has attained only limited success in answering many of the 

above questions. However, ultimately, it will be settlement archaeology and the analysis of Maya 

landscapes that will provide answers concerning their ancient spatial organization. 

2. Results and Data Subdivisons 

LiDAR has proven to be a powerful tool for viewing the landscape [17,18]. Like the successful 

2009 LiDAR survey of Caracol [19,20], the 2013 campaign over Western Belize was flown by the 

National Center for Airborne Laser Mapping (NCALM) and required 14 survey flights, totaling  

71.34 flight hours over 14 consecutive days, from 27 April through 10 May 2013. This activity resulted 

in a total survey area in 2013 in Western Belize of 1057 km2 that was additional to the 200 km2 covered 

by the 2009 Caracol LiDAR campaign (Figure 1). 

Figure 1. Map showing the areas in Belize that have been surveyed with LiDAR as a result 

of the 2009 and 2013 campaigns. 

 

NCALM used an Optech Gemini Airborne Terrain Mapper (ALTM) mounted on a twin-engine 

Cessna 337 aircraft, flying at 600 m AGL and a ground speed of 60 m per second. Three hundred and 

twenty-five north-south survey flight lines were flown; these were spaced approximately 137 m apart, 

which resulted in triple swath overlap. The laser was operated at a pulse rate of 125 kHz with a beam 

divergence of 0.8 mRad and a scan frequency of 55 Hz. The nominal scan angle was 18 degrees with 

an edge cutoff of 1 degree. Some 42.95 h of laser-on time was necessary to record the approximately 

15 laser shots per sq m that were fired. 
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GPS observations collected at ground stations operated continuously during the survey and were 

combined with GPS and inertial measurement unit (IMU) data collected aboard the aircraft to derive 

high quality aircraft trajectories and orientation. These data were processed with Optech proprietary 

software to obtain “point clouds” containing evenly spaced reflections from surfaces (including vegetation) 

returning sufficiently strong signals to be detected by the LiDAR sensor. Classification of individual 

points in the point cloud was done using selected routines in commercial software TerraScan version 

13.009 (Terrasolid Inc., Finland). The main ground classification routine classified ground points by 

iteratively building a triangulated surface model, as described by Axelsson [21]. The algorithm started 

by selecting some local low points assumed as sure hits on the ground, within a specified window size. 

The nominal ground classification parameters used for this project were: Window Size: 25.0 m; Max 

Terrain Angle: 89.0 degrees; Iteration Angle: 9.0 degrees; Iteration Distance: 1.4 m. Points identified 

as outliers because of their low elevation relative to neighboring points were retained, as the area is 

known to contain openings to caves, which are potentially of archaeological significance [22]. On 

average, 2.8 returns per sq m were classified as ground return, but that varied widely depending on the 

local density of vegetation. 

After completing the classification, the ground points were processed using the Ordinary Kriging 

Algorithm [23], as developed in commercial software Surfer Version 11 (Golden Software) to produce 

the ground Digital Elevation Model (DEM). The Kriging parameters used were a linear variogram 

model with nugget effect (error variance of 0.15 m and a micro-variance of 0 m). A 4-quadrant sector 

search was used with a 20 m search radius to ensure that the minimum (five points per quadrant) was 

met. Resolution of the bare earth DEM produced by NCALM was 1 m. The DEM was then processed 

to create hillshade images using ArcMap Ver 10.0 (Esri), with a sun azimuth of 315 degrees (NW), a 

sun elevation of 45 degrees, and a vertical Z-factor of 1. 

2.1. 2009 Caracol LiDAR Survey 

In April 2009 the Caracol Archaeological Project (www.caracol.org) engaged in the first extensive 

use of LiDAR to record a broad spatial area of Maya settlement [19,24]. A successful grant to the 

Space Archaeology Program of the National Aeronautic and Space Association (NASA) yielded 

funding for what was seen as being an experimental approach to gaining surface information through 

the application of LiDAR, an aerial delivery system that uses laser pulses to gain entry through 

enveloping foliage. As a result of this funding, NCALM was subcontracted to record 200 km2 of 

landscape in the vicinity of Caracol at a density of 20 points/km2 (Figure 2). This survey was carried 

out at the end of April 2009 and the data were transmitted to the project in June 2009. 

The usefulness of LiDAR as an archaeological survey tool was first established in temperate 

forested landscapes [25–27]. LiDAR has been used to identify archaeological remains in forested areas 

in Europe [28], Canada [29], and the Americas [30], although the ease of this identification varies with 

the kind of tree cover and the amount of modern disturbance [31–33]. It has subsequently become 

evident that LiDAR is also useful in tropical forested landscapes, as has been shown in the point cloud 

that was produced around Caracol, Belize [20,34,35], the piedmont zone of Chiapas, Mexico [36], and 

Angkor, Cambodia [37]. 
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Figure 2. The 2009 LiDAR DEM of the Vaca Plateau with an overlay of Caracol’s 

causeways and the distribution of the site’s public plazas and architecture. The area 

between this public space is infilled with agricultural terraces and Maya residential groups. 

Architectural complexes mentioned by name in the text are numbered. 

 

At Caracol, because the landscape was largely undisturbed by modern settlement, and because more 

than 25 years of mapping had already been undertaken at the site, it was possible to verify the accuracy 

of the LiDAR data with already recorded sections of residential groups [38], terraces [39], and road 

systems [40]. Once this was done, the effectiveness of LiDAR as a method of archaeological survey in 

the Maya area was established [41,42]—and its effectiveness in similar tropical forest environments in 

other parts of the world has now been verified [37]. 

However, while the 2009 LiDAR survey of Caracol demonstrated a landscape completely filled 

with agricultural terraces, residential groups, and roads leading to public plazas (Figure 3), only the 

approximate limits of the site of Caracol appeared within this DEM. While the northern and southern 

limits of the city could be ascertained at the boundaries of the 200 km2 area, the eastern and western 

limits of the site could not be fixed. Thus, while the site of Caracol took up most of the 200 km2 area in 

the LiDAR survey, it was not possible to determine exactly how the site was situated relative to the 

broader landscape or to other sites. To gain this information, it became clear that even broader regional 

coverage was needed. 
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Figure 3. 2.5D LiDAR rendering of the bare earth Caracol epicenter and surrounding 

residential groups, agricultural terraces, and roadways [20] (Figure 7 modified). 

 

The opportunity to undertake such a survey soon arose. The earlier success of LiDAR programs in 

Europe [25–27] and the Americas [29,30] in penetrating forested areas to see surface archaeological 

remains was replicated in the 2009 Caracol LiDAR survey [19,20,34]. Because of the detail contained 

in the three-dimensionality of the point clouds that had been generated for Caracol, most archaeological 

projects working in western Belize (and other parts of the Maya area) became interested in accessing 

LiDAR data for their own specific research sites. The ability to hillshade the point clouds to highlight 

not only anthropogenic features but also the actual topography meant that these data permitted a 

ground surface view that was not possible with traditional archaeological maps—and visual inspection 

of the DEMs was capable of providing a great deal of detail that could be both interpreted and 

augmented with known archaeological data and previous ground-checks. Because the limits of Caracol 

were not evident in the original survey, the Caracol Archaeological Project was immediately in 

discussion with other funding agencies to secure backing for another LiDAR program. Other 

archaeological projects were soon in similar discussions. The Alphawood Foundation indicated that 

they would be willing to support a comprehensive LiDAR program in Western Belize, if considered in 

a coordinated, rather than piecemeal, fashion. Therefore, all of the interested parties (Caracol 

Archaeological Project; Belize Valley Archaeological Project; Minanha Archaeological Project; 

Cuevas Archaeological Project; Mopan Valley Archaeological Project; Mopan Valley Preclassic 

Xunantunich Archaeological Project) made a single grant submission in which the only funding 

requested was for the LiDAR itself. As a result of this integrated effort, the Alphawood Foundation 

agreed to fund the acquisition of 1057 km2 of new LiDAR data at 15 points/km2. This aerial survey 

was flown by NCALM in April and May of 2013, and the data were distributed to the vested parties at 

the beginning of September 2013. 

2.2. 2013 Western Belize LiDAR Survey 

The 2013 LiDAR survey was subdivided into three distinct packets of data. The first section lay 

east of the original Caracol survey area, extending to the Macal River and then south to cover the area 
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around the site of Cuevas [43] (Figure 4). This section of the survey was designed to find the eastern 

limit of Caracol, to document settlement in the Cuevas area, and to see what, if any, spatial relationship 

existed between Cuevas and Caracol. Because much of the eastern and central sections of the 2013 

survey areas are covered by heavily forested areas that contained no population, visual inspection 

alone of the DEMs permitted the identification of ancient road systems, agricultural terracing, 

residential settlement, and concentrations of public architecture. Much like the 2009 survey area, 

visual inspection alone also permitted the recognition of settlement drop-off within the landscape [20]. 

Figure 4. The 2013 LiDAR DEM of the eastern survey area showing the distribution of 

sites with public architecture and the eastern extent of Caracol, as represented by the 

continuation of the site’s road systems and three new public plazas. Architectural 

complexes mentioned by name in the text are numbered. The Chilillo Dam (constraining 

the Macal River) is in the northern extent of this DEM. 
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The second packet of data ran north from the original Caracol survey area to the Belize Valley and 

was bracketed by the Guatemala-Belize border to the west and the Macal River to the east (Figure 5). 

This section was designed to delineate the settlement and terraces that existed in this very hilly region, 

especially around and between the known sites of Caledonia [44], Camp 6 [45], Caballo [46,47], 

Ixchel [48], Minanha [49,50], and Arenal [51]. 

Figure 5. The 2013 LiDAR DEM of the central survey area showing the distribution of 

sites with public architecture (Macal River to the east; Guatemala border to the west). 

Architectural complexes mentioned by name in the text are numbered. 

 

The third section of LiDAR survey was designed to encompass the Belize Valley, running from the 

border and Xunantunich [52] to the high plateau region east of Pacbitun [53] and from the Maya 
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Mountains in the south to just north of the Belize River. The border section was also extended to the 

north in order to include the site of El Pilar [54] within the survey (Figure 6). 

Figure 6. The 2013 LiDAR DEM of the northern survey area, representing the Belize 

Valley, showing the distribution of sites with public architecture. Architectural complexes 

mentioned by name in the text are numbered. The Macal (on which Site 12 is located) and 

Chiquibul (on which Site 1 is located) Rivers join together at the modern city of San 

Ignacio (north of Site 3) to form the Belize River. 

 

2.2.1. Eastern Survey Section 

Analysis of the eastern survey section was quite informative. Caracol settlement and terracing was 

found to continue in dense concentration on the high ground due east of the limit of the 2009 LiDAR 

survey. Causeways also continued beyond the known Caracol road system and the public architectural 

concentrations that have been designated as Hatzcap Ceel and New Maria Camp (Figure 2). The 

causeway leading east from Hatzcap Ceel ran approximately 3.5 km to a large plaza and then out the 

other side of this plaza, continuing 4 km east to yet another large plaza and ballcourt. This final public 

plaza appears to be walled and is located on the high ground at a point overlooking a valley that 

descends to the Macal River. Another three-kilometer long causeway joined New Maria Camp to 

another large plaza with ballcourt located to the east in the uplands above the Macal River. These new 

eastern causeways extend far to the east, enough to support the suggestion that the site of Caracol was 
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extracting resources from this part of the Macal River or the Maya Mountains. Extensive survey and 

excavation were done along the banks of the river in this area [55], just prior to the flooding caused by 

the Challilo Dam. The recovered archaeological data from this region show a strong relationship to 

Caracol ritual patterns, as would be expected; foreign tradewares were also encountered in many 

residential groups along the banks of the river and probably came into this area by means of Caracol’s 

causeways. Most important from the standpoint of understanding the eastward extension of the 

causeway system is that granite sections along the sides of this part of the Macal River showed 

evidence of extensive processing of pre-forms for metates (Woodye, personal communication, 2012). The 

existence of these pre-forms suggests that the metamorphic stone that occurs here was being mined for 

a basic necessity in any ancient Maya household. Manos and metates were (and still are) used to 

process maize into a comestible item. Because granite manos and metates were superior to the softer 

limestone versions of these artifacts, which introduced far more grit into the ancient diet, there was a 

ready market for these stone artifacts. Thus, it is likely that the granite metates and manos found 

throughout the Peten of Guatemala and Northern Belize were coming from this part of the Maya area 

and were being transported through the Vaca Plateau along Caracol’s causeways. Control of such a 

vital resource may at least partially explain Caracol’s siting and prominence in the western flank of the 

Maya Mountains. 

Southeast of these Caracol road systems, the settlement and terracing gradually decreases, 

emphasizing the separation between Caracol and its southern neighbor Cuevas (Figure 7).  

Cuevas appears in an area that is largely devoid of continuous settlement or terracing. Other groups 

and monumental space occur within the terrain around Cuevas, but at some distance. A walled plaza 

exists about 2 km southwest of Cuevas and large residential groups exist approximately one kilometer 

northeast and northwest of Cuevas. The group to the northeast of Cuevas is situated atop a ridge and 

has a causeway that runs due east for approximately four kilometers, ending up in the walled plaza site 

of Monkeytail (Figure 5). Like Caracol’s easternmost public plaza, Monkeytail is situated near a 

corridor to the Macal River. However, settlement between Cuevas and Caracol is sparse, suggesting 

that this part of the Vaca Plateau was not within Caracol’s direct urban sphere. 

Figure 7. 2.5D LiDAR bare earth rendering of the site of Cuevas, that is located on the 

edge of a sinkhole leading to an extensive cave system. 
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2.2.2. Central Survey Section 

The central survey section (Figure 5) contains a series of smaller sites within a very mountainous 

region. Many of these have been reported in the archaeological literature and have undergone 

excavation (as detailed below); however, the LiDAR also demonstrates that there are other early 

architectural centers within this part of the Maya Mountains that did not become large settlements. 

Previous work within the central survey section has included work at Camp 6 [43], Caledonia [42],  

Ix Chel [48], Minanha [49,50], and Arenal [51]. Following brief work in the 1920s at Camp 6, 

Caledonia was one of the earliest sites worked in this part of the survey area. It is located on the south 

bank of the Macal River just north of where the concrete bridge crosses the river to provide passage to 

Caracol and Cuevas. While Caldeonia can be seen in the LiDAR, it appears decimated from having 

been used as a firing range for British artillery some two decades ago. A previously unrecorded E 

Group (see extended discussion of this architectural form below) is immediately northwest of 

Caledonia on high ground. Some five kilometers north of the Vaca Plateau and Caracol’s northern 

limit, along the western edge of the survey area, is another flat plateau that is heavily terraced and is 

occupied by the large site of Caballo, first recorded in 1990 by the Caracol Archaeological Project. 

Even then, Caballo was badly looted, although a carved stone altar depicting a Maya day sign was 

recorded at the site by Nikolai Grube [47]. The LiDAR shows that Caballo is quite an extensive site 

with causeways that run east-west across the middle of its plateau. Apart from this area of fairly level 

ground, most of the region further north in the central survey section is exceptionally hilly or 

comprised of very rugged terrain. Further to the north, in the center of this section, occupying a  

north-south ridge, is the site of Yaxnoh; this medium-size center with a series of linked architectural 

groups and a causeway extending to the south had not been previously recorded before this LiDAR 

survey (Figure 8).  

Figure 8. 2.5D LiDAR bare earth rendering of the newly-found site of Yaxnoh, Belize. 
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Further south is the site of Ixchel, initially known because of a cave from which a speleothem was 

recovered and tested [48]. East of Yaxnoh and north of Ixchel in a north-south valley is what remains 

of the site labeled by Thompson [45] as Camp 6; the LiDAR indicates that this area has seen modern 

disturbance. Proceeding even further to the north, the site of Minanha is encountered [49,50] and then 

the site of Arenal [51], as well as several smaller sites. Thus, in spite of relatively inhospitable terrain, 

nodal settlements are fairly regularly spaced throughout this section of the Maya Mountains. 

2.2.3. Belize Valley Survey Section 

Within our study area, perhaps the best known area archaeologically is the Belize Valley  

(Figure 6) [56]. Excavations have been undertaken in the Belize Valley for almost a century and 

currently there are a number of archaeological projects that continue operating at different sites within 

this region. The Belize Valley—and specifically the site of Barton Ramie—was the area chosen by 

Gordon Willey [5,57,58] for his initial settlement survey that was designed to define how Maya society 

was structured. However, in his quest to understand the non-elite classes of the Maya, he bypassed 

excavation in the larger monumental architecture that articulated with the general settlement [59], 

meaning that his initial work did not fully resolve the complex issue of the structure of ancient Maya 

society [60,61]. Willey is to be credited, however, with his focus on the non-elite at Barton Ramie, 

something that was often included only as an afterthought in many subsequent archaeological projects 

that focused predominantly on large monumental architecture. Initial work in the Belize Valley 

focused on Xunantunich [62,63], Nohoch Ek [64], and on Baking Pot [65] (Figure 9).  

Figure 9. 2.5D LiDAR bare earth rendering of the site of Baking Pot, located on the Belize 

floodplain (Belize River in upper right). 

 

More recent work has focused on Pacbitun [53,66], Negroman-Tipu [67], Cahal Pech [68], 

Blackman Eddy [69], Buenavista del Cayo [70], Actuncan [71], Chan [72], and several smaller sites in 
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the upper Belize River valley [73]. Ongoing archaeological research continues at Xunantunich [74], 

Buenavista [75], Cahal Pech [68], and Baking Pot [76,77]. To the northwest of the Belize Valley, 

archaeological work has also been undertaken at El Pilar [54]. 

The LiDAR data from this well-studied area still contained surprises. Xunantunich has massive 

plaza areas to the north of the hilltop that supports the core of the site; there is also what appears to be 

a moat or embankment on the hilltop just east of the site’s central acropolis, known as “El Castillo” 

(Figure 10). Evidence for drained field canal systems are found in the vicinity of Baking Pot; this 

represents a kind of ancient agricultural system not previously identified in the Belize Valley. A 

previously-unknown site is located approximately 3 km east of El Pilar. Pacbitun appears to have a 

causeway running north to a group located on a hilltop 2 km away. Finally, a very large site, not 

previously reported and here designated as “Barton Creek,” is in the upland area east of the actual 

Barton Creek. 

Figure 10. 2.5D LiDAR bare earth rendering of the hilltop site of Xunantunich. 

 

3. Discussion 

The 2013 LiDAR survey of West-central Belize, covering 1057 km2 (additive to the collection of  

200 km2 at Caracol in 2009), constitutes one of the largest regions recorded with this technology 

specifically for archaeology. The selection of 15 points/m2 for the 2013 LiDAR program was based on 

a re-analysis of the point density of the 2009 LiDAR (collected at 20 points/m2). Little detail was lost 

in the 2009 LiDAR when re-configured at 15 points/m2, but 10 points/m2 showed a diminution in 

visual accuracy and five points per sq m resulted in significant loss of detail. One of the strengths of 

the 2013 LiDAR survey is that it was carried out over both forested and open landscapes. Much of the 

central (Figure 5) and eastern (Figure 4) sections of the LiDAR survey are under relatively virgin 

forest with no permanent settlement. This fact means that the bare earth DEM for this region is rich in 
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archaeological detail that has not been very disturbed by modern populations. The only non-ancient 

features that are evident in these DEMs are old logging roads and modern deforestation along the 

border area [78]. These areas of modern disturbance have resulted both in surface modification (caused 

in some cases by chaining to remove trees, which also disturbs the ancient mounds) and changes in 

vegetation patterns (specifically, the introduction of low growth shrubs and grasses), making visual 

interpretation of the LiDAR more difficult. 

The third segment of the 2013 LiDAR program in the Belize Valley (Figure 6) is perhaps the most 

difficult to interpret visually because of this area’s heavy modern populations and large-scale 

agricultural production, all of which have introduced new landscape features and vegetation patterns, 

as well as replaced some of the ancient ruins with modern settlement. Even if looted (the resulting 

holes from this illicit activity are quite visible in the LiDAR), the major concentrations of public 

architecture are still quite visible because of their height above the ground surface. However, much of 

the low-lying ancient settlement is more difficult to ferret out of the DEMs because of modern 

disturbance—and the features require human visual inspection for absolute identification. The ways 

that modern disturbances both reflect and distort the LiDAR data form a future research area for both 

LiDAR and archaeology; this interface will see more testing, ground-truthing, and use of the actual 

LAS files to enhance the visualization of the LiDAR data. A further limitation of the LiDAR is 

something shared with all forms of survey. It does not, in and of itself, provide temporal information; 

LiDAR is best used in concert with on-the-ground verification and excavation. 

From the standpoint of archaeology, the regional LiDAR data described here open up significant 

new avenues for exploration. While it is generally possible to see the various sites, the agricultural 

fields, and the landscape, how does this new data add to our archaeological understanding of ancient 

Maya settlement? The 2013 LiDAR data were collected in order to test the various models of  

socio-political organization that had been proposed within archaeological literature. Most of the 

models that have been promulgated for the ancient Maya were based on very limited spatial data. 

These models vary in their form, ranging from seeing the Maya of the Classic Period (ca. 250–900 C.E.) as 

being independent city-states [6,79] to regional states [12,80] to huge hegemonic “superstates” [9,10]. 

Each of these models implies different expectations in terms of spatial layout: city-states would be 

represented spatially by discrete individual centers of relatively equal size and concentrated population 

distributed fairly evenly over the landscape; regional states would be represented by larger primate 

centers with a supporting series of smaller centers distributed in the nearby countryside; hegemonic 

superstates would be represented by even larger primate centers with demonstrated contact with other 

centers at some distance from themselves as evidenced by material culture remains and/or hieroglyphic 

texts. What the 2013 LiDAR data show is that ancient Maya spatial organization does not easily fit 

into any of the expected models and that a mix of socio-political organizations must have existed in 

different parts of the Maya area at any one time (compare expansive Caracol (Figures 2 and 4) with the 

sites in the Belize Valley (Figure 6), see also the discussion below). Future archaeological research 

based on data derived from the 2013 LiDAR survey in the inter-site areas will help to refine our 

understanding of Maya socio-political organization and its development. 

The first point that emerges from these data is the regularity in the way that public architecture is 

distributed over the landscape. Based on mapping at Caracol, we recognized that there were clusters of 

public architecture embedded in the settlement every three to eight kilometers; archaeological excavation 
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demonstrated that these concentrations of public architecture varied in terms of time of construction; 

some had been purposefully constructed at the beginning of the Late Classic Period (ca. 600 C.E.) 

while others antedated the physical expression of Caracol, the city, by several centuries [40]. Those 

concentrations approximately three kilometers distant from the epicenter had been constructed at the 

beginning of the Late Classic Period to serve the needs of a burgeoning population [81]. Archaeological 

data showed that the concentrations of public architecture that were five to eight kilometers distant 

from the Caracol epicenter had been pre-existing sites, co-existing with Caracol, that later became 

engulfed within the broader Caracol city as it expanded in the Late Classic Period (550–850 C.E.). 

The earliest public architecture recognized in the Maya area are called “E Groups” and are believed 

to have been built for communal rituals relating to the solar calendar [82]. When they appeared in the 

Preclassic Period (B.C.E. 1000–150 C.E.), they are believed to represent independent centers of 

population [83] and have been linked by some researchers [84] to the appearance of royal architectural 

compounds. Five early E Groups occur within the Caracol landscape; all were investigated 

archaeologically and proved to have been constructed as independent units in the Late Preclassic 

Period (B.C.E. 150–150 C.E.; see Figure 2); while the forms of these early groups were preserved, 

only the one in the Caracol epicenter showed extensive modification and use in the Early Classic 

Period (ca. 400–500 C.E.) [85]. This form of early pre-existing spacing in public architecture is also 

evident to Caracol’s north (see Figure 6). In spite of exceedingly rough terrain, the spacing of public 

architecture every five to eight kilometers is in evidence in the western foothills of the Maya 

Mountains. It is also certainly present within the fertile bottomlands of the Belize Valley, where the 

regularity in public architecture and sites has been commented on by numerous researchers [86,87]. 

What this early settlement distribution of public architecture indicates is that distinct Maya groups 

tended to distribute themselves in a regular fashion over the landscape. The early nature of this 

distribution has been confirmed throughout the southeast Peten of Guatemala by the occurrence of 

almost 200 early E Groups throughout this region [85]. As mentioned above, there are five E Groups 

within the city of Caracol that also represent early independent settlements—and similar E Groups are 

also found throughout the western Maya Mountains in the LiDAR survey. The regularity in placement 

of public architecture in the Belize Valley is also early, confirmed both by the archaeology of the 

Belize Valley which has produced some of the earliest ceramic materials in the Maya lowlands [88] 

and by its own E Group variant [89]. Thus, at least in the Late Preclassic Period, the spatial organization of 

Maya public architecture over the landscape appears to have followed fractal principles [90]. 

The real question, however, is why did the later Maya landscape become infilled with settlement 

between some concentrations of public architecture and not between others? In addition, why were 

new nodes of public architecture constructed? When viewed through the LiDAR surveys, the 

uniqueness of Caracol relative to the other settlements is very apparent. At Caracol, the landscape 

between the public architecture was filled with residential groups and terraces (see Figure 3)—to the 

point that new areas of public space were necessary (and were created) within the burgeoning 

settlement to serve as administrative and marketing areas [40,91,92]. The causeways at Caracol also 

reflect the fact that the distributed public architecture at the site and the settlement were part of an 

integrated political order with control vested in the unique architectural complex of Caana (see Figure 3), 

located in the center of the site. Given the lack of readily available water—as well as the remoteness of 
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the site—the extensive spread of settlement at Caracol contrasts greatly with the other areas within the 

LiDAR survey— particularly the Belize Valley. 

The Belize Valley was the perfect area for continuous integrated settlement. It was typified by 

extremely fertile soils that were replenished on a yearly basis as the Macal River flooded its banks 

after exiting the steep foothills of the Maya Mountains. The Belize River not only supplied water to 

inhabitants on its shores, but also acted as a ready communication system and trading avenue. Yet, 

while settlement is somewhat denser on the higher land between the Macal and Chiquibul Rivers, the 

rest of this central area does not present the continuous settlement that is found in the Caracol region. 

And, importantly, any physical expressions of political integration (such as roadways between nodes) 

are lacking, presumably indicative of the differences among the sites and of their individual histories. 

While several of the Belize Valley sites had their own internal causeway systems—Cahal Pech [93], 

Baking Pot [65], Xunantunich [94], Buenavista [70], and Pacbitun [66,95]—these causeways did not 

connect separated nodes of public architecture as they did at Caracol; rather, the roads appear to have 

generally connected elite groups and acropoli to public architecture. The same is true for the sites of 

Arenal, Yaxnoh, and Caballo located in the central survey section. The one known exception is a 

Pacbitun causeway that connects the site to a cave, which was presumably used as an important ritual  

area [66]. 

Thus, a key settlement difference between Caracol and the other sections of the 2013 LiDAR survey 

is that formally constructed roads join nodes of public architecture together within the Caracol 

landscape and nowhere else. While shorter roadways appear at some sites elsewhere in the survey area, 

they do not link monumental space together. While the Belize River would have served as a focus for 

transportation in the Belize Valley, it did not effectively unite the autonomous sites located in that 

valley. We know that the form of an urban settlement is to some degree both determined and 

conditioned by its roads [96]; populations are drawn to roads. The long-distance roads in the Caracol 

landscape would have been conducive to first linearly-settled populations and then populations that 

expanded out from the roads. Thus, the trigger for the Late Classic integrated road system at Caracol 

may have been an alliance between Late Preclassic Caracol and Late Preclassic Cahal Pichik that 

resulted in the construction of a linking roadway. Over time, Caracol’s expanded road system became 

a way for integrating an ever-increasing population, all of which was guided by a centralization 

focused on the unique architectural complex of Caana. 

Clearly, then, different pressures and processes were at play within all three subsets of data. In the 

Belize Valley, settlement integration was relatively modest and, consequently, each site in the valley 

reveals a relatively distinct history and its own defined public core. Although the residential settlement 

is somewhat concentrated around these public plazas, it is still quite dispersed compared to the Caracol 

area. While drinking water, fertile soils, and water transport were available to encourage denser 

settlement and greater integration, these processes were generally absent. Apparently, there were 

insufficient pressures and/or advantages to spur an intensification of political unification in the Belize 

Valley. The situation at Caracol was clearly different. This can be seen physically in the density of 

both settlement and terraces that cover approximately 200 km2, as well as in the solar system of the 

causeways that connects the distributed public architecture to the site epicenter (Figure 2). It can also be 

seen socially in a shared Caracol identity [91] and a purposeful management style that stressed 

symbolic egalitarianism [97], especially in the ritual domain [98]. 
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Thus, these LiDAR data offer some insight as to how large integrated systems may arise, 

particularly because they can be coupled with information from decades of excavation. Archaeologists 

often focus on critical resources such as water and agricultural land as being key to the successful 

evolution of internal complexity. These are differentially distributed within Western Belize. In the 

Belize Valley, water was available to all the settlements; in the Maya Mountains and Vaca Plateau, the 

absence of rivers meant that reservoirs needed to be constructed and maintained to ensure safe drinking 

water. Similarly, while soils were readily available in all areas for extensive farming, the floodplains of 

the Belize River presented incredibly rich agricultural land that were replenished during floods and 

were suitable for intensive agriculture without much modification. Elsewhere, however, including in 

the hilly areas bordering the floodplains of the Belize River and its tributaries, the landscape needed to 

be extensively modified to carry out intensive farming. What this suggests is that in more challenging 

terrain, greater organizational skills were required and that, in some instances, these skills may have 

been translated over time into better integration and centralization. 

4. Conclusions 

The 2013 LiDAR survey increased the amount of LiDAR data collected in western Belize by 

528.5% in a span of 14 days (from 200 km2 to 1257 km2). It also increased the spatial size of Caracol 

by 20%, from 160 km2 of continuous integrated settlement [20] to 200 km2 of continuous integrated 

settlement; because Caracol extends west into Guatemala, an area not covered by LiDAR survey, the 

site is actually even larger. Like the earlier 2009 LiDAR survey, the 2013 LiDAR survey led to the 

discovery of numerous previously unidentified archaeological features—ranging from housemounds 

and agricultural fields to monumental architecture and causeways. Importantly, while western Belize is 

among the most continuously researched regions in the Maya area, this research constitutes the first 

time that the sites within this area could be connected by regional survey. The large size of Caracol has 

implications not only for our understanding of ancient Maya socio-political organization, but also 

relative to interpretations of the world-wide phenomenon known as low-density urbanism [99]. 

Regional LiDAR surveys elsewhere in the Maya area are also required to demonstrate that this site is 

not unique. 

In certain instances in the Maya area, a single node of monumental architecture came to dominate a 

broadly-settled agricultural landscape, but archaeological data indicate that different organizational 

strategies were employed. Sometimes, such as the case at Caracol, the continuously settled landscape 

was highly integrated through a dendritic outwardly-focused road system that linked internal nodes to 

the epicenter. In other cases, such as at Tikal, Guatemala and Calakmul, Mexico, the continuously 

settled landscape was more centrally-focused and less spatially integrated [1]. Even though presenting 

different forms and structured organizations, these continuously settled landscapes are all currently 

classified together as forms of low density urbanism [77,99]. As more LiDAR is gained for some of 

the other spatially large sites in the Maya area, it may become possible to better parse—and better 

understand—exactly what constituted Maya low density urbanism. 

There is great variation in the size, composition, and layout of ancient Maya sites within the survey 

area, as well as in their landscape adaptations. Some sites were centered in broad regional landscapes 

that were continuously settled while other sites were fairly isolated from their neighbors. This can be 
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seen through comparing Caracol and the linear settlement along the Belize River with centers in the 

central portion of the LiDAR survey. The floodplains and immediate foothills along the Belize River 

present a strip of relatively continuous settlement that contains a series of embedded sites consisting of 

multiple public plazas; however, none of these sites exhibit any constructed landscape features that 

would indicate that they were ever integrated with each other. In fact, their distinctive archaeological 

records have been interpreted to indicate that such integration did not exist [54]. In contrast, Caracol 

presents an expanded area of continuous settlement with an extremely integrated network of roads and 

architectural constructions. However, the foothills of the Maya Mountains between the Belize Valley 

and Caracol present an area of non-continuous and non-integrated settlement focused on nodes of 

monumental architecture, each presumably having a fairly independent history. 

Remote sensing, and particularly LiDAR, has made a huge difference in the field of Maya 

archaeology. The ability to undertake spatial analysis of Maya sites without painstaking on-the-ground 

survey and the capability to view the ground plans of sites through the tree cover are huge benefits in 

attempting to reconstruct ancient spatial organization. The 2013 West-central Belize LiDAR campaign 

has provided data that will be mined for years to come. Importantly, it helps to resolve some of the 

former problems of scale and focus that bedeviled Maya settlement archaeology for so long. The 

LiDAR data help to better elucidate the variation in settlement size and intensity that is found 

throughout the Maya area and they also provide a basis for understanding polity size and organization. 

Importantly, the data show that some of the ingrained concepts of Maya spatial organization and polity 

size that were developed prior to the advent of LiDAR will need to be re-thought. However, in spite of 

the wealth of information provided in the new LiDAR data, it is almost impossible to add a temporal 

dimension without excavation. To fully contextualize and understand ancient Maya settlement, the 

LiDAR data must be conjoined with on-the-ground excavation data. Given the amount of 

archaeological research that has taken place within the 2013 survey zone, this is indeed possible and 

will constitute the next step in reconstructing the diachronic spatial organization of the ancient Maya. 

Remote sensing has clearly altered the field of Maya archaeology, ultimately showcasing the scale and 

complexity of ancient settlement that was possible within a sub-tropical environment. 
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